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We consider a system of adaptive self-interested agents interacting by playing an iterated pairwise prisoner’s
dilemma(PD) game. Each player has two options: either coopei@teor defect(D). Agents have nglong
term) memory to reciprocate nor identifying tags to distinguish C from D. We show how their 16 possible
elementary Markoviarione-step memojystrategies can be cast in a simple general formalism in terms of an
estimator of expected utilitied”. This formalism is helpful to map a subset of these strategies into an Ising
Hamiltonian in a straightforward way. This connection in turn serves to shed light on the evolution of the
iterated games played by agents, which can represent a broad variety of individuals from firms of a market to
species coexisting in an ecosystem. Additionally, this magnetic description may be useful to introduce noise in
a natural and simple way. The equilibrium states reached by the system depend strongly on whether the
dynamics are synchronous or asynchronous and also on the system connectivity.
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I. INTRODUCTION gies could be represented as payoffs and phenomena like

The self-organization into cooperative equilibrium statesPh@se transitions understood as many-agents games. As a
is a ubiquitous phenomenon in nature: electrons in a supeRarticular application we have seen a proliferation of papers
conducting material, local magnetic moments in a ferromagdevoted to quantum games and quantum strate@ies),
net, molecules that cooperate to form cells, cells that coopissues connected with efficient quantum algorithms for quan-
erate to form living creatures that in turn cooperate to formtum computing and quantum cryptogragly]. Conversely,
societies, and so on. This problem of how populations ofphysics can be useful to understand the behavior of adaptive
self-interested agent®r agents who pursue to satisfy some agents playing games that are used to model several complex
goal locally or individually cooperatéor manage in order to  systems in nature. An example of this is the application of
satisfy this goal globally or collectivelycan be regarded the techniques developed in nonequilibrium statistical phys-
from different points of view. The way biologists, econo- ics to biological context§11,12.
mists, and physicists approach this problem is often con- The most popular exponent of game theory is phison-
nected with paradigms or core concepts of their fields, reer's dilemma(PD) game introduced in the early 1950s by
spectively: Darwin's evolution, homo economicus andfjood [13] to model the social behavior of “selfish”
statistical thermodynamics. These three approaches can hgjividuals—individuals which pursue exclusively their own
summarized in turn by three extremal principles: filnessse|f-penefit. The PD game is an example of @2 game in
maximization in biology, profit maximization in economics, normal form:(i) there are two players, each confronting two

and minimization of the free energy in physics. choices—to coo o
. — perateC) or to defect(D)—(ii) each player
Game theory offers a common and flexible framework tOmakes his choice without knowing what the other will do,

erform the comparison of the different approaches. It coa- . . g
Easced in its norrgal fornj1] during the Seé)c[))nd World War and(iii) there is a % 2 matrix specifying the payoffs of each

with the work of von Neumann and Morgenstdi2] who player for the four possible outcomés,C], [C,D], [D.C],

first applied it in economics. Later, in the 1970s, it was theand[D’D]' This payoff matrix is written as

turn of biology mainly with the work of Maynard-Smifl3], R S
who applied game theory to evolution and proposed the con- M = ( ) (1)
cept of evolutionarily stable strateg¥S9 for understanding TP

biological phenomena. The problem of the evolution of co-a player who plays C gets the “reward or the “sucker’s
operatiye behavio(how can coopgration emerge in a world payoff’ S depending if the other player plays C or D, respec-
of egoists without central authority®vas analyzed exten- ey while if he plays D he gets the “temptation to defect”
sively by Axelrod[4] in the 1980s. The computer tourna- T or the “punishmentP depending if the other player plays

ments he organized demonsirated that cooperation based, D, respectively. These four payoffs obey the relations
upon reciprocity can emerge and prove stable. Applications

include politics, economics, international affairs, etc. Indeed, T>R>P>S, (2a)
neither consciousness nor a brain are required to play games: .
the results of recent experiments with two variants of a RNAPIUS the condition
virus can be interpreted as both variants engaged in a two- JR> S+T. (2b)
player gamg5].

Very recently, game theory entered into physics as an al€ondition(2b) is required in order to avoid the possibility of
ternative approach to physical problems. For instance, enecollusion between the pair of players. The dilemma is that,
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independently of what the other player does, defection Dsuch as the ground-state configuratigrelated to the
yields a higher payoff than cooperation(T>R andP > S); asymptotic limit of the iterated gamend spatial correlation

i.e., D is thedominantstrategy for every player. But by play- functions as much as to introduce stochasticity through tem-
ing D in a sequence of encounters, both players do worsperature in a simple and uniform manner. We also analyze
than if both had cooperated®<R). Indeed, when the PD the subset of strategies covered by the estimator approach
game is played repeatedly, there are many strategies that okt are not mappable onto the Ising model but admits a fixed
perform the dominant D strategy of the one-shot game. Thigstimate(independent of the obtained utilitiesThe case of

is the content of the so-calldgolk theorem[14]. Different  payLOV is the most relevant example. The equilibrium
mechanisms have been proposed to escape from the nonG@yies into which the system self-organizes roughly fall into
operative one-shot dominant strategy in the case of iteratehee types: “universal cooperation” or “all C,” intermediate
prisoners d|IemrT]a(|PD) game. We mlght_ call .the Prepon- jeyel of cooperation, and “universal defection” or “all D"
der_ant a_pproach in social sqena:bgect remprocnybecguse depending on the fraction of C individuals at equilibrium
reciprocity between agents is considered as the basis for co- "o respectivelyc..= 1, 0< Coy< 1, andc, =0

operation[4]. In order to reciprocate, the agents need first to que' \}\'/ould like to rg?nar’k thafqthe ’treatrr?gnt 'We resent
discriminate between cooperators and defectors. Thereforﬁ, ; . . prese
either memory of previous interactions or featutdags”) nere Is nonev_olutlor_lary, at least from the_ traditional [_)grwm-
[15] permitting one to distinguish those agents who respond@n Point of view, since we do not consider competition of
to the cooperation and those who do not are required. |lifferent strategies and subsequently the survival of the fit-
other words, cooperation becomes an equilibrium because i8St

one will gain from defecting due to the retaliation and losses

they would suffer. This is the philosophy behind a popular Il. EXTENDED ESTIMATOR APPROACH FOR

strategy known asit for tat (TFT): cooperate on the first ELEMENTARY MARKOVIAN STRATEGIES

move, and then cooperate or defect exactly as the other
player did on the preceding move.

There are other approaches that do not require memory or Originally the estimate for each playAf was taken fixed
tags. For instance, Nowak and Mf36], working in a bio- and the same for all the playef$7]. Now we consider an
logical context, proposed a different approach to the problenextended estimate which, in general, depends on the two-
of the evolution of cooperation which neglects all strategicalplayer behavioral variables. Thus, for a given payoff matrix,
complexities or memories of past encounters. Instead, frortike Eq. (1), a strategy can be defined by specifying its cor-
this perspective, which we will call thgpatial evolutionap- ~ responding estimate. The state of a given pldyeis repre-
proach, spatial effects by themselves, in a classical Darwinsented by a two-component vect8r A general expression
ian setting, are sufficient to the evolution of cooperation.for S; in terms of the behavioral variabtg is given by
Another alternative, not belonging to the evolutionary game
theory tradition, was proposed very recertly]. It involves S = ( Gi ) (3)
self-interested agents without memory of past encounters, 1-g

without tags which, in principle, do not need any spaﬂalwhere the cooperation variabbde=1 for the cooperativéC)
structure(pairs of players can be selected at random 'nSteagtateSi—C=(l) and ;=0 for the non-cooperativéD) state
=C=(j = -

of being chosen from a fixed neighborhgodt each time :DE((l)). In this basis, the payoff matrdd is given by Eq.

step, a pair of agents are selected at random to play. Ea L . X . .
playeri uses a simple “measure of success” to evaluate if h ). The utilities obtained by agefiplaying with agen{ can
e expressed then as

did well or badly in the game, which consists in comparing
his utilities A; with his estimate of expected incorde. He A= gﬁTMSj =(R-S-T+P)cic; +(S-P)c; + (T - P)c; + P,
updates next his behavior or stdté or D) in consonance;

ie., he keeps his behavior if he did well and modifies (48
verty it if he did badly. We call this thestimatorapproach.  which generalizes as

It is a generalization of the philosophy underlying the strat-

egy of “win-stay, lose-shift” known as PAVLOYL8], which A=, S'MS,,= STMZS,), (4b)
is also very popular within adaptable agent modelifay nn

instance, i*n_th*e PD game, PAVLOV corresponds to take thgnen agent plays with all thez agents of his neighborhood
estimateA; =A" with A° somewhere in between the punish- (3ne 4t 4 time In Eq. (4b) the subscriphn stands for nearest
mentP.and _the reward). . o neighbors andS,,) denotes the average over them.

In this article,(1) we provide a unlfy_mg framework for all In the extended version of the estimator formulation, a
elementary one-step memory strategies in terms of an EXte@'eneral strategy for a two players’ game consists of flipping

s!(r)]n gfe:ui:nsgmatg r;‘to(r)rfnttﬁ]lsngn t?zra(tde) \_/;e gaedszgtla.nmaﬁ;mt e stateS; if and only ifthe obtained utilties after playing
ping subs S€s gies sing gainstj are smaller than the estimate—i.e.,

tonian (that generates a Monte Carlo dynamics identical to
the one produced by themit turns out that thesksing map- (0 1

A. Extended estimator formulation

pable strategieIMS’s) include TFT. This connection, be- S = 10
sides its conceptual interest, opens the possibility to apply
tools of statistical mechanics to extract relevant propertiesvhich, again, generalizes as

)Si = A <A(S,S), (5a)
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. (01 . pairs of siteq(i,j) and the second over all the sites.
Si=l] o3 = Ai<ZA(SSW), (5b) The local energy change associated with the flipping of
the spin at site is given by
when agent plays with thez agents of his neighborhood.
Here, A*(S,Sj) is the estimate that defines the particular AE;=-2[JZ o, + h]o;. (10
strategy, an@' is the new state of the playemfter playing i i i
againstj, accolrding to the rule Eq5a). Note that Eq(5a) is | "€ most general expression for the es“‘_m_ﬁe‘fi"fj) is of
equivalent to the flipping condition a=0 in a Metropolis  the form of Eq. (78 with arbitrary coefficients. In other
[19] algorithm if A,—A" is replaced by the energy variation words, the estimate can be.deﬂned. as the fictitious payoff
when performing the updating of the local configuration: thecCrresponding to an alternative matrix,
state is flipped with probability 1, only iA;—A" <0. R
B. Mapping the iterated game into an Ising model M= (T* =8 )’
Let us now show how the estimator approach can be
mapped into an Ising model. The equivalence between th¥
two-valued behavioral variable of a given play& or D) * . * _ _
and a magnetic Ising spim=1/2 ispretty obvious. Further- A(U2,112=R, A'(1/2,-1/2=S,
more, the similitude between the update rule ¢prin the X X X .
estimator approach when playing the IPD game and the Me- A(-12,12=T, A(-12,-12=P.

tropolis update rule used in Monte Carlo simulations will , .
serve as a guide to establish this connection. Thus we begiH'€ Way we choose to map the Ising system on IPD is by
dentifying AE; with the differenceA;—A’"(o;,0;) between

by defining the Ising spins associated to the behavioral vari

ith obviously these four possibilities:

ables: the obtained payoff and the estimate. But only a reduced
o class of strategies can be mapped this way. Indeed, while

= —1/2= +1/2 for (i) in the C state, ©) expression(7a) contains a mixed terma;o;), two indepen-

b - 1/2 for (i) in the D state. dent termsg(o; and g;), and a constant term, expressidr)

contains only mixeda;o;) and single(o;) terms. Thus, in
order to perform the mapping*(ai,a]—) must be chosen such
that the terms proportional tr;) and constant one cancel
out. This restrictive condition in terms of the matrix

M” reads

In the Ising language, the equation for the utiliti&) and
(5b) becomes

1
Ai:(R_S_T+ P)O’iO'j +§(R+S_T_ P)O’i

+%(R—S+T—P)aj+%(R+S+T+P), (7a) AR =S +T -P)oj+3(R+S+T +P)
=3(R-S+T-P)oj+3(R+S+T+P)
OR+T =R+T and S+P =S+P. (11

1
A= ((R— S=-T+P)gjon,+ §(R+ S-T-P)g; Acceptable strategies for the mapping are thus generated
nn by specifying two independent parameteysand e,:

which, in the case oz nearest neighbors, is generalized as

1 1
+E(R_S"'T_P)Unn+Z(R+S+T+P)>- (7b) 6=S-S=P-P" and =R -R=T-T". (12
Hence, the flipping conditions become, respectively, ~ With the above parametrization, the mapping takes a very
) . simple form:
o =—0; = A <A (0,09, (8
, . AE, = A - 20" (01,(0nn) = 27 (&1~ &) = 3(&1 + €) |
o ==0y = A <ZA (0y,00). (8b) ,
Note that, since); is linear in g}, the interaction with 0J=e-€ and h:§(61+62)- (13
multiple neighbors reduces to the interaction with the aver-
age spiroyp)- The Metropolis algorithm, applied to single site updating,

Once we have made the translation between estimator arfdates that the probability for a given site to accept a given
magnetic variables, we are ready to connect the Ising Hamilchange(from 1 to 2 depends on the associated internal en-
tonian with the iterated PD. We consider the Ising Hamil-€rgy difference:

tonian in uniform magnetic field: 1

H:\]E O'i0'j+hz gj. (9) P1-2= [(EZ—E1> '
l+exg ——

(0.0 i
We will refer to J as the coupling constant and toas the
external field. The first sum is taken over all the interactingThus the temperature-dependent flipping probabilities are

B
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TABLE |. Main features of nine elementary Markovian strategies: five with fixed estimate plus four with conditional estimate and
mappable on the Ising model. ARD stands for asynchronous random dynamics; SFC stands for synchronous fully connected.

Estimate Steady-state cooperation
Character
Strategy ~ Fixed Conditional  (pg, P, Ps, Pp) ARD SFC
FROZEN A'<S (1,0,1,0 Arbitrary, c'=c,  Depending on initial configuratio(See Fig. 1
RETALIATOR S<A"<P (1,0,0,0 c'=0 Stablec’=0;1;1/21co;1-Co ¢ =(1/2)
AMBITIOUS R<A'<T (0,0,0,2 ¢'=(3-,5)/2=0.38
ALTERNATOR T<A® (0,1,0,2 c=1/2
€1 €2
ALWAYS D NO >0 >0 (0,0,0,0 c'=0 (See Fig. 2¢"=0orc'=1
TIT-FOR-TAT >0 <0 (1,1,0,0 Arbitrary, ¢ =¢g
CONTRADICTOR <0 >0 (0,0,1,2 c'=1/2
ALWAYS C <0 <O (1,1,1,2 c=1
1 -1 (1,0,0,0, whenP>A">S, and PAVLOV(1,0,0,] strategies,
20| (€1~ €){ony = Slate) whenR>A">P, both especially relevant for evolutionary
ps=|1+ex . schemes. The three remaining less studied strategies are
keT FROZEN(1,0,1,0, AMBITIOUS (0,0,0,1, and ALTERNA-

(14) TOR (0,1,0,2. On the other hand, we have the 1G+4)
At temperatureT=0, only the sign of the energy differ- :7_strategieds, WlhiCh cannot be(;p_rmullated_ in terrgs of zé_fixed
ence matters: the change is accepted with probability 1 i hst|mate and only accept a conditional estimate depending on
AE<0 and rejected otherwise. e state of pairs of playe_rs. For instance, the ANTI-
PAVLOV (0,1,1,0 implies estimator-matrix elements obey-
. _ . ingS<S, P'<P,R">R, andT >T.
C. Classifying Markovian strategies The FES and IMS subsets, which have null intersection,
A useful scheme for the classification of Markovian strat-comprise the most relevant strategies. In Table | we summa-
egies is based on the four conditional probabilifigspr,ps,  fize the main features of these nine strategies. The five pos-
and pp that an individual play<, in a two-players’ game, sible regions delimited by the four real numbers\f yield
after it scoredR,T,S, or P, respectively, in the previous the five different FES'Supper part of Table)l The charac-
round[20,21]. The strategies can be represented as points iters of the IMS’s are the Metropolis flipping probabilities
this four-dimensional strategy spa¢pg,pr,ps,pp). Here, — generated by Eq(14) at zero temperature.
we will restrict attention teelementary Markovian strategies

in which pg, pr, ps, andp are either equal to 0 or (binary Ill. ANALYSIS OF ISING MAPPABLE STRATEGIES
agent$. Thus there are“216 possible strategies. All these
strategies can be formulated in terms of the extendembor Let us analyze the IMS strategies for the simplest case of

ditional estimate which in general depends on the state of=1. Notice that, from Eq(10), for the TFT(CONTRADIC-

both players. It turns out that the mapping procedure definedOR) strategy the sign oAE; is equal to the sign obo;

by Egs.(9<14) generates a subset of folging mappable (-o;0;), J<0(>0) andh can take a positive, null or nega-
strategiesdepending on the signs ef ande,. For instance, tive value; i.e., it corresponds to a ferromagnétatiferro-
€,>0 ande,>0 is equivalent tR<R’, T>T', S<S, and  magneti¢ material in an arbitrary external magnetic field. On
P>P" and hence this implies—according to E§a—pgr  the other hand, in the case of ALWAYS-C and ALWAYS-D
=pr=ps=pp=0: i.e., (0,0,0,0 or ALWAYS D strategy. An-  strategies the corresponding material can be a ferromagnet or
other interesting situation is; >0 ande, <0 that results in  an antiferromagnet and what determines the state is the di-
(1,1,0,0 or TFT: imitate in the next round what your oppo- rection of the external field, always stronger than the cou-
nent did in the present round. The other two strategies thgiling constant] (cooperative state ifi is negative and all the
complete the IMS subset are the opposite of these two: ALspins point in the upward direction, and noncooperative state
WAYS C and CONTRADICTOR. The remaining #8=12 if the field is positive and the spins point in the downward
strategies are nonmappable onto the Ising model. This subséirection.

of strategies can in turn be divided into two types whether A measure for the attained degree of cooperation in the
they admit or not a fixed estimafd”=cons}. Thus, on the system is naturally provided by the average cooperation—
one hand, we have fivéixed estimate strategie§-ES’y.  i.e., the fractionc of C agents. The value,, of this fraction
Among them, we recognize the usual RETALIATOR in the ground statefor IMS's, is related to the ground-state
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average magnetizatio,;), of the Ising system: most often satisfied since playing against a majority of co-
operators, forcing them to defect at each round. In contrast,

(15) close toc=1/2, theprobability for a cooperator to defect is
about the same as the probability for a defector to cooperate.

H this th d . d state | t al The same reasoning applies to RETALIATOR, for which the
owever, this thermodynamic ground state IS not always ate nly stable cooperation i$ =0. The steady state cooperation

tained during an IPD game, especial'ly for highly gonnec;ecﬁalues for all considered strategies, within the ARD, have
systems. This is due to the fact that high connectivity Imp“esoeen calculated and included in the last but one column of
the simultaneous updating of a given player and many of it able |

opponents; thus, starting from a given configuration, the at-
tainable configurations are just a small subset of the phase
space. In the following, we have thus to distinguish between  B. Stability in the synchronous fully connected system

the steady-stat@fter a transientaverage cooperaticzi and L - .
the thermodynamic average cooperatig To bypass this FElg'stg?]t d claMsgslt Is necessary to disiinguish between the

nonergodicity, one has to use “generous” versions of the con- () FES. The equilibrium state strongly depends upon the

sidered strategy, where the probabilities in the character . . . . ; ) .
(bg, Pr. Ps. Pp) are different from strictly 0 or 1. From the initial configuration, producing a quite complex phase dia-

: : : T . .~ _gram in terms of initial configurations and values &f.
%&?tren-]toe %’Sggltﬁrzoll\;lltt)r?tfss:wce:rli()ﬂ:jlf/r:;ﬁi%ilvalent 0 conmderFrom Eq.(4b), asz=N-1, the obtained utilities can be writ-

ten as a function o€:

1
Ceq™= 5 +(ai)o.

IV. STABILITY OF COOPERATION A=, S'MS,,= STMZ(S,»)
At this stage, it is necessary to make a distinction between "
synchronousand asynchronous dynamictndeed, while the “(N-1) CR+(1-0)S, for§=C, (17
characters of the different generated strategies have been de- cT+(1-c¢)P, forS=D.

fined on a “two-player” basis, the evolution will strongly

depend on the type of dynamics and connectivity we assume A ;table conrf]lgure;;uon IS rgg:hed_ Whin all pljlyershget a
for the system. When all the agents simultaneously updat ayo greater than the estim - or, In other words, when
is lower than the cooperator’s utilities. Marginal stability

their states in each round, we talk about synchronous dynant: .
y y reached also when all players defect ands lower than

ics. Conversely, when the update is carried out for the subsé?} def s utilities. Whem* falls in b
of agents who just played, we talk about asynchronous dyt- e, efector's utl |’t|es.. wwhe alls in .etween'cqopera-
r's and defector’s utilities, defectors will remain in the D

namics. The asymptotic configuration also depends on thi® . .
connectivity. Two limits will be addressed: tlsynchronous state, while form_er cooperators will all start to defect. Thus,
random dynamic$ARD), in which a pair of players is ran- the system is driven t@=0 in one round. From the latter

domly chosen for each round, and thechronous fully con- configuration, two outcomes are possibi:if A <P, all
nected(SFQ dynamics, where each player interacts simulta-P'ayers(defectors are satisfied with the payoff and the sys-

neously with all thez=(N-1) remaining players in the tem is st_at_)le(ii)_ i A > P, all players are unhappy and the
system. system rigidly flips tac=1 in the next round. But here, again,

we are dealing with a bifurcation: the system will be stable
o ) only if A" <R and will otherwise oscillate betweear0 and
A. Stability in asynchronous random dynamics c=1. Similarly, for A" greater than the defector’s payoff,
In this casec” for a large system{N>1) can be easily Uusing the same kind of reasoning as above, we can distin-
evaluated, both for FES's and IMS’s, by equating the variaguish four different steady-state configurations: stabtel

tion rate of the C population to zero: —¢o (wherec is the initial average cooperatiproscillations
) 5 betweerc=0 andc=1, stablec’ =1, and oscillations between
oc=-cY(1-pr)—c(l-c)(1-ps=pr)+(1-c)Ppp=0, c=cyandc=1-c,. The(cy; A") phase diagram in Fig. 1 sum-

(16) marizes the above discussion.

o o (I IMS. In this case, the steady state corresponds to the
where the ﬂ|pp|_ng probabilities are rel_gtgd to the system aVzsymptotic limit of theT=0 Metropolis dynamics. As we
erage cooperatioathrough the probabilities in the characte_r have anticipated, this steady state is not the thermodynamic
(Pr, P1,Ps; Pp). As an example, let's calculate the ARD equi- 4rond state. Performing the same kind of analysis as we did
librium cooperation for the charactét, 0, 0, 3—i.e, the oy FES's, we obtain a phase diagram in which the steady
PAVLOV strategy—in which a cooperator will flip if it = gtate is eithec=0 or c=1, depending both upon the initial
scoresS, while a defector will flip if it scoresP: average cooperatiory and upon the mapping parametess
and e,. In order to illustrate this situation, we displayed the
phase diagram in Fig. 2: the distance of a given point to the
Here, onlyc"=1/2 is astable solution since, for all but one origin, in this diagram, corresponds to the value of the initial
cooperating agents, the system is rapidly driven away fronaverage cooperatiofD<<cy,<1); its location in one of the
c=1. This can be easily proven by noticing that, in the PAV-four quadrants corresponds to the considered IMS’s, as indi-
LOV random-asynchronous strategy, minority defectors areated for each quadrant. The phase space turns out to be

cl-c)=(1-c)’=c' =% or ¢ =1.
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ALT rant by co=-1+26/ 7. These two equations are the polar

T representation of the critical cooperation valtre|e|/(| €]
OSCILLATING +|e,|) dividing the ¢, axis in two regions in CONTRADIC-
4 g%g% Co <> 1-Co TOR and TFT strategies.
OSCIIJ.ATNG5 2 OSCILLATING ;
0 0<>1 ¢ V. THERMODYNAMICS PREDICTIONS FOR THE IMS
R 33888888 CASE

A* An advantage of the formulation in terms of the magnetic

variables is the possibility to introduce noise or fluctuations

in a straightforward way by considering the case of nonzero

temperature. The fluctuations can help this self-organizing

system to explore and find more stable and, eventually, effi-

cient equilibrium states in its “fitness” landscape. In other

words, the injection of noise or random perturbations into the

system will allow it to escape for an eventually “shallow”

local minimum for the free energy and to reach a deeper
valley. Let us analyze the IMS’s in terms of the associated

co FR Ising model. The Hamiltonial10), for fully connected sys-
tems (z=N-1), reduces to the internal energy functional
FIG. 1. Phase diagram indicating the FES steady-state averadd({o)) and, atT=0, to the free energy function&l({o)):

cooperation for SFC dynamics, as a function of the initial average 3 ]

cooperationcy and the fixed estimatd”. Note the two bold lines _ Nl Y 2 Y

Zcro(sls%)the diagram, representing the two payoff functions defined in H= J% oo+ h; gi= N[ 2N<Cr> 2<02> * h<a>]

qg. .

(<)
A\

J J
=U OF =N| =N(aH2+h ——]. 18
divided into two regions for which the steady-state value of (o) (o)) [2 (o) (o) 8 (18)

cooperation is 0 or 1. For ALWAYS D and ALWAYS C strat-
egies, the steady state is trivially0 andc=1, respectively.
The boundary in the TFT quadrant is given by the polar
equationcy=1+260/7 and in the CONTRADICTOR quad-

According to Eq.(13), which defines the two parametels
andh, we can write

2

F((o)) = N_{(fz — e+

(e1+ &){o) - AN

(19

The ground-state magnetizatidn;), is the one that mini-
mizesF({o)) within the interval[—%; +%]. For large systems
(N>1), the free energy functional reads

N-1 62—61]
5 .

N2
F(o)) = ?[(62 —e)(0)? + (e, + &)(0)].

When bothe; and e, have the same sign, sinde,|—|e|
<|e,|+|€ ], the ground state is determined by the sign of the
external fieldlh=¢;+¢,), regardless of the sign of the cou-
pling constantJ=¢,—¢;). The minima will be then located
on the edges of the allowed interval:

for AAWAYSD (h>0): (o)g=—3, i€, Ce=0,

for ALWAYS C (h<0): (o)=+3, i€, Ceq=1,

coinciding with the steady state obtained with the0 Me-
tropolis dynamic§AD and AC quadrants in Fig.)2
When ;>0 ande, <0 (TFT), we are mapped on a fer-
FIG. 2. Phase diagram indicating the IMS steady-state averagi®Magnetic systentJ<0) and the ground state coincides
cooperation for SFC dynamics, as a function of the initial averagedgain with the ends of the interval, determined by the sign of
cooperatiorc, and the mapping parametessand e,, as discussed the external field:
in the text. CON, AD, and AC are abbreviations for CONTRADIC- 1.
TOR, ALWAYS C, and ALWAYS D, respectively. fore;>e (h>0): (o)o=-3, ie, Cq=0,
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~ N
SZA ZMF:Tr{exp(—,BHMF)}:{Z cos)’(%hﬂ . (21

And the implicit equation for the average magnetization is

_laln(ZMF) __E Z\K(T>+h
(o) = N oh - Ztam‘{ﬁ—z } (22)

At the zero-temperature lim{{fzZ— «), the right-hand term in
Eq. (22) is a step function centered af)=-h/zj, jumping
from J_r% to I%, depending on the sign & its intersection
with the linear left-hand term will give th&IF solution.
When bothe; and e, have the same sign, the intersection
is unique, and the results are the same as indicated in Fig. 2.
When e; <0 ande, >0, the unique intersection is at

1 €1 &
=—=— 0 c.,=—+ = = ,
(o zj 2¢-6 2 o a-6 |eal+]e
coinciding also with the results in Fig. 2.
Whene; >0 ande, <0 (TFT), three intersections are pos-
sible, but only one corresponds to the free energy minimum

FIG. 3. Phase diagram indicating the IMS thermodynamlc(ferromagnetic system in external figldrhe two solutions

ground-state average cooperation for SFC dynamics, as a functig@ Ceq=0 (for |ex| > |e,]) andceq=1 (for & <€), again in

of the two mapping parametets and e,. perfect agreement with Fig. 2. _
Thus, the ground state of the fully connected system is the

_ 1 B same of the MF Hamiltonian. This ground state also applies,
foree<e (h<0): (0)o=+3, i€, Cq=1. as a good approximation, to highly connected systems—i.e.,
When(N 1)>z>1.

This is in clear contrast to the phase diagram of Fig. 2. Here
the frontier between the ground statgg=0 andce,=1, in
the TFT quadrant, is a straight diagonal line regardless of the VI. DISCUSSION
initial configuration.

Finaly, whene; <0 ande,>0 (CONTRADICTOR), we
are mapped on an antiferromagnetic sys{@m 0) and the
ground state falls in the interior of the interval. The precise
value of the ground-state magnetizati@r), is obtained for

In summary, it was shown that all the relevant elementary
Markovian strategies can be formulated in terms of an ex-
tended (conditiona) estimate. These strategies have been
studied and their equilibrium states computed for two ex-
treme situations: ARD and SFC. Two of the most popular

the derivative ofF((o)) going to zero: agent strategies—PAVLOV and TFT—have been identified
IF(0)) le+e, 1le|-le)l as particular examples of the estimator-based strategies be-
=0 (g=- 22 =2t 2 Ceq longing to different categories. While the second is mappable
o) 26— € 2|ef+]e onto the Ising Hamiltonian the first is not.

The exploitation of the mapping between a subset of the
space of simple Markovian strategies and the Ising model,
presented in this work, will be analyzed in a future publica-

Here again, the results differ drastically from thie0 Me-  tion. Here we only explored some of its more straightforward
tropolis dynamics. The ground state depends on the precig®nSequences.
values of the model parameters, varying continuously be- In addition, this correspondence can be extended beyond
tween 0 and 1. the Ising model. First, instead of considering uniform agents
The above results—which are independent of the initia@ more realistic assumption is the heterogeneity in the degree
configuration—are summarized in the phase diagram of Figdf selfishness. This can be accomplished by taking an esti-
3. mateA” that varies from agent to agent—i. eAadependent
For fully connected systems, we expect the mean-fiel®n the sitei (or equivalently the fictitious payoffs varying
(MF) treatment to provide an exact solution. Indeed, the MFrom agent to agent This would correspond to a spin glass

|€1|

- le| + e

Hamiltonian can be written as follows: instead of an Ising model. Second, the binary behavior as-
sumption(C or D) is often criticized as unrealistic. In real

Hye=J>, ooy + hz o= E he;, (20) life situations the agents exhibit different degrees of coopera-

i#] tion. This feature can be overcome by resorting to continuous

- behavioral variables; instead of binary ones as it was con-
with h=[zXo)+h]. The corresponding partition function sidered in[22]. In that case the mapping with magnetic sys-
reads tems would lead to more rich models like the& model in
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which topological excitations govern its phase diagramies is theStag Huntgame[23] also known as théssurance
Work on these directions is in progress. game in which,R>T>P>S and, thus, rational agents are

The connection between the generalized estimator appulled in one direction by considerations of risk and in an-
proach and the spatial evolutionary games[b6] is also  other by considerations of mutual benéfi4]. Another rel-
worth analyzing in the context of a general discussion of theevant game to explore with the formalism presented here,
cooperation between self-interested agents from the point afhich is useful in the context of population dynamics, is the
view of biologists, economists, and physicists. Moreover, aHawk Dovegame introduced by Maynard-Smif8]. In that
heterogeneous estimator formalism can be used to implemenase the punishment the players got when both play D is so
evolutionary games. strong thatR>T>S>P.

To conclude, it is worth remarking that the study we car-
ried out for the PD game is valid for an arbitraryk2 game
with a payoff matrix of the form of Eq(1l) but payoffs
R, S, T, andP not obeying relation$2a) and(2b). For ex- This work was supported by the Swiss National Science
ample, an alternative model of cooperation in human societFoundation and by the EPFL.

ACKNOWLEDGMENTS

[1] J. Hofbauer and K. Sigmundihe Theory of Evolution and as the dominant strategy. See R. B. MyersGame Theory:
Dynamical System@ambridge University Press, Cambridge, Analysis of Conflict(Harvard University Press, Cambridge,
England, 1988 MA, 1991).

[2] J. von Neumann and O. Morgenstefirheory of Games and [15] J. Epstein, Complexity(5), 41 (1999.
Economic Behavior(Princeton University Press, Princeton, [16] M. Nowak and R. May
1944). ' ' '

[3] J. Maynard-SmithEvolution and the Theory of GaméSam-
bridge University Press, Cambridge, England, 1982

[4] R. Axelrod, The Evolution of CooperatiofBasic Books, New

Int. J. Bifurcation Chaos Appl. Sci.
Eng. 3, 35(1993; Nature(London 359 826 (1992.

[17] H. Fort, J. Artificial Societies Social Simul. JASS3K) 6(2),
4 (2003 (http://www.soc.surrey.ac.uk/JASSS/

York, 1984. [18] D. Kraines a}nd V. Kraines, Theory Decisidl6, 47 (1988.
[5] P. E. Turner and L. Chao, Natufeondor) 398 441 (1999. [19] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
[6] D. A. Meyer, Phys. Rev. Lett82, 1052(1999. Teller, and E. TeIIer.. J. Chem. Phy21, 1087(1953.
[7] J. Eisert, M. Wilkens, and M. Lewenstein, Phys. Rev. L8g, |20 M. Nowak and K. Sigmund, Naturé.ondon 364 56 (1993.
3077(1999. [21] K. Brauchli, T. Killingback, and M. Doebeli, J. Theor. Biol.
[8] C. F. Lee and N. Johnson, e-print quant-ph/0207012. 200, 405(1999.
[9] C. F. Lee and N. Johnson, Phys. Lett.391, 343 (2002. [22] H. Fort and S. Viola, Phys. Rev. B9, 036110(2004.
[10] L. Goldenberg, L. Vaidman, and S. Wiesner, Phys. Rev. Lett[23] This game can be traced to Rousseau’s “A Discourse on In-
82, 3356(1999. equality” in which he contrasts the payoff of hunting hare
[11] G. Szabé and C. Toke, Phys. Rev.3B, 69 (1998. where the risk of noncooperation is small but the reward is
[12] G. Szabd, T. Antal, P. Szabd, and M. Droz, Phys. Re\6Z: equally small, against the payoff of hunting the stag where
1095(2000. maximum cooperation is required but where the reward is so
[13] M. Flood (unpublishegl much greater.

[14] The iterated game has to be played an indefinite number of24] B. Skyrms,The Stag Hunt and the Evolution of Social Struc-
rounds; otherwise, if the players know when it ends, D remains  ture (Cambridge University Press, Cambridge, England, 2004

016132-8



