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We consider a system of adaptive self-interested agents interacting by playing an iterated pairwise prisoner’s
dilemmasPDd game. Each player has two options: either cooperatesCd or defectsDd. Agents have noslong
termd memory to reciprocate nor identifying tags to distinguish C from D. We show how their 16 possible
elementary Markoviansone-step memoryd strategies can be cast in a simple general formalism in terms of an
estimator of expected utilitiesD* . This formalism is helpful to map a subset of these strategies into an Ising
Hamiltonian in a straightforward way. This connection in turn serves to shed light on the evolution of the
iterated games played by agents, which can represent a broad variety of individuals from firms of a market to
species coexisting in an ecosystem. Additionally, this magnetic description may be useful to introduce noise in
a natural and simple way. The equilibrium states reached by the system depend strongly on whether the
dynamics are synchronous or asynchronous and also on the system connectivity.
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I. INTRODUCTION

The self-organization into cooperative equilibrium states
is a ubiquitous phenomenon in nature: electrons in a super-
conducting material, local magnetic moments in a ferromag-
net, molecules that cooperate to form cells, cells that coop-
erate to form living creatures that in turn cooperate to form
societies, and so on. This problem of how populations of
self-interested agentssor agents who pursue to satisfy some
goal locally or individuallyd cooperatesor manage in order to
satisfy this goal globally or collectivelyd can be regarded
from different points of view. The way biologists, econo-
mists, and physicists approach this problem is often con-
nected with paradigms or core concepts of their fields, re-
spectively: Darwin’s evolution, homo economicus and
statistical thermodynamics. These three approaches can be
summarized in turn by three extremal principles: fitness
maximization in biology, profit maximization in economics,
and minimization of the free energy in physics.

Game theory offers a common and flexible framework to
perform the comparison of the different approaches. It coa-
lesced in its normal formf1g during the Second World War
with the work of von Neumann and Morgensternf2g who
first applied it in economics. Later, in the 1970s, it was the
turn of biology mainly with the work of Maynard-Smithf3g,
who applied game theory to evolution and proposed the con-
cept of evolutionarily stable strategysESSd for understanding
biological phenomena. The problem of the evolution of co-
operative behaviorshow can cooperation emerge in a world
of egoists without central authority?d was analyzed exten-
sively by Axelrod f4g in the 1980s. The computer tourna-
ments he organized demonstrated that cooperation based
upon reciprocity can emerge and prove stable. Applications
include politics, economics, international affairs, etc. Indeed,
neither consciousness nor a brain are required to play games:
the results of recent experiments with two variants of a RNA
virus can be interpreted as both variants engaged in a two-
player gamef5g.

Very recently, game theory entered into physics as an al-
ternative approach to physical problems. For instance, ener-

gies could be represented as payoffs and phenomena like
phase transitions understood as many-agents games. As a
particular application we have seen a proliferation of papers
devoted to quantum games and quantum strategiesf6–9g,
issues connected with efficient quantum algorithms for quan-
tum computing and quantum cryptographyf10g. Conversely,
physics can be useful to understand the behavior of adaptive
agents playing games that are used to model several complex
systems in nature. An example of this is the application of
the techniques developed in nonequilibrium statistical phys-
ics to biological contextsf11,12g.

The most popular exponent of game theory is theprison-
er’s dilemmasPDd game introduced in the early 1950s by
Flood f13g to model the social behavior of “selfish”
individuals—individuals which pursue exclusively their own
self-benefit. The PD game is an example of a 232 game in
normal form:sid there are two players, each confronting two
choices—to cooperatesCd or to defectsDd—sii d each player
makes his choice without knowing what the other will do,
andsiii d there is a 232 matrix specifying the payoffs of each
player for the four possible outcomesfC,Cg, fC,Dg, fD,Cg,
and fD,Dg. This payoff matrix is written as

M = SR S

T P
D . s1d

A player who plays C gets the “reward”R or the “sucker’s
payoff” Sdepending if the other player plays C or D, respec-
tively, while if he plays D he gets the “temptation to defect”
T or the “punishment”P depending if the other player plays
C or D, respectively. These four payoffs obey the relations

T . R. P . S, s2ad

plus the condition

2R. S+ T. s2bd

Conditions2bd is required in order to avoid the possibility of
collusion between the pair of players. The dilemma is that,
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independently of what the other player does, defection D
yields a higher payoff than cooperation CsT.R andP.Sd;
i.e., D is thedominantstrategy for every player. But by play-
ing D in a sequence of encounters, both players do worse
than if both had cooperatedsP,Rd. Indeed, when the PD
game is played repeatedly, there are many strategies that out-
perform the dominant D strategy of the one-shot game. This
is the content of the so-calledFolk theoremf14g. Different
mechanisms have been proposed to escape from the nonco-
operative one-shot dominant strategy in the case of iterated
prisoner’s dilemmasIPDd game. We might call the prepon-
derant approach in social sciencesdirect reciprocitybecause
reciprocity between agents is considered as the basis for co-
operationf4g. In order to reciprocate, the agents need first to
discriminate between cooperators and defectors. Therefore,
either memory of previous interactions or featuress“tags”d
f15g permitting one to distinguish those agents who respond
to the cooperation and those who do not are required. In
other words, cooperation becomes an equilibrium because no
one will gain from defecting due to the retaliation and losses
they would suffer. This is the philosophy behind a popular
strategy known astit for tat sTFTd: cooperate on the first
move, and then cooperate or defect exactly as the other
player did on the preceding move.

There are other approaches that do not require memory or
tags. For instance, Nowak and Mayf16g, working in a bio-
logical context, proposed a different approach to the problem
of the evolution of cooperation which neglects all strategical
complexities or memories of past encounters. Instead, from
this perspective, which we will call thespatial evolutionap-
proach, spatial effects by themselves, in a classical Darwin-
ian setting, are sufficient to the evolution of cooperation.
Another alternative, not belonging to the evolutionary game
theory tradition, was proposed very recentlyf17g. It involves
self-interested agents without memory of past encounters,
without tags which, in principle, do not need any spatial
structurespairs of players can be selected at random instead
of being chosen from a fixed neighborhoodd. At each time
step, a pair of agents are selected at random to play. Each
player i uses a simple “measure of success” to evaluate if he
did well or badly in the game, which consists in comparing
his utilities Di with his estimate of expected incomeDi

* . He
updates next his behavior or statesC or Dd in consonance;
i.e., he keeps his behavior if he did well and modifiessin-
vertsd it if he did badly. We call this theestimatorapproach.
It is a generalization of the philosophy underlying the strat-
egy of “win-stay, lose-shift” known as PAVLOVf18g, which
is also very popular within adaptable agent modelingsfor
instance, in the PD game, PAVLOV corresponds to take the
estimateDi

* =D* with D* somewhere in between the punish-
mentP and the rewardRd.

In this article,s1d we provide a unifying framework for all
elementary one-step memory strategies in terms of an exten-
sion of the estimator formulation ands2d we present a map-
ping between a subset of these strategies and an Ising Hamil-
tonian sthat generates a Monte Carlo dynamics identical to
the one produced by themd. It turns out that theseIsing map-
pable strategiessIMS’sd include TFT. This connection, be-
sides its conceptual interest, opens the possibility to apply
tools of statistical mechanics to extract relevant properties

such as the ground-state configurationsrelated to the
asymptotic limit of the iterated gamed and spatial correlation
functions as much as to introduce stochasticity through tem-
perature in a simple and uniform manner. We also analyze
the subset of strategies covered by the estimator approach
that are not mappable onto the Ising model but admits a fixed
estimatesindependent of the obtained utilitiesd. The case of
PAVLOV is the most relevant example. The equilibrium
states into which the system self-organizes roughly fall into
three types: “universal cooperation” or “all C,” intermediate
level of cooperation, and “universal defection” or “all D”
depending on the fraction of C individuals at equilibrium
ceq—i.e., respectively,ceq=1, 0,ceq,1, andceq=0.

We would like to remark that the treatment we present
here is nonevolutionary, at least from the traditional Darwin-
ian point of view, since we do not consider competition of
different strategies and subsequently the survival of the fit-
test.

II. EXTENDED ESTIMATOR APPROACH FOR
ELEMENTARY MARKOVIAN STRATEGIES

A. Extended estimator formulation

Originally the estimate for each playerD* was taken fixed
and the same for all the playersf17g. Now we consider an
extended estimate which, in general, depends on the two-
player behavioral variables. Thus, for a given payoff matrix,
like Eq. s1d, a strategy can be defined by specifying its cor-
responding estimate. The state of a given playersid is repre-
sented by a two-component vectorSi. A general expression
for Si in terms of the behavioral variableci is given by

Si = S ci

1 − ci
D , s3d

where the cooperation variableci =1 for the cooperativesCd
stateSi =C;s 1

0
d andci =0 for the non-cooperativesDd state

Si =D;s 0
1

d. In this basis, the payoff matrixM is given by Eq.
s1d. The utilities obtained by agenti playing with agentj can
be expressed then as

Di = Si
TMSj = sR− S− T + Pdcicj + sS− Pdci + sT − Pdcj + P,

s4ad

which generalizes as

Di = o
nn

Si
TMSnn = Si

TMzkSnnl, s4bd

when agenti plays with all thez agents of his neighborhood
sone at a timed. In Eq.s4bd the subscriptnn stands for nearest
neighbors andkSnnl denotes the average over them.

In the extended version of the estimator formulation, a
general strategy for a two players’ game consists of flipping
the stateSi if and only if the obtained utilties after playing
againstj are smaller than the estimate—i.e.,

Si8 = S0 1

1 0
DSi ⇔ Di , D*sSi,Sjd, s5ad

which, again, generalizes as

D. ARIOSA AND H. FORT PHYSICAL REVIEW E71, 016132s2005d

016132-2



Si8 = S0 1

1 0
DSi ⇔ Di , zkD*sSi,Snndl, s5bd

when agenti plays with thez agents of his neighborhood.
Here, D*sSi ,Sjd is the estimate that defines the particular
strategy, andSi8 is the new state of the playeri after playing
againstj , according to the rule Eq.s5ad. Note that Eq.s5ad is
equivalent to the flipping condition atT=0 in a Metropolis
f19g algorithm if Di −D* is replaced by the energy variation
when performing the updating of the local configuration: the
state is flipped with probability 1, only ifDi −D* ,0.

B. Mapping the iterated game into an Ising model

Let us now show how the estimator approach can be
mapped into an Ising model. The equivalence between the
two-valued behavioral variable of a given playersC or Dd
and a magnetic Ising spins=1/2 ispretty obvious. Further-
more, the similitude between the update rule forci in the
estimator approach when playing the IPD game and the Me-
tropolis update rule used in Monte Carlo simulations will
serve as a guide to establish this connection. Thus we begin
by defining the Ising spins associated to the behavioral vari-
ables:

si = ci − 1/2 =H+ 1/2 for sid in the C state,

− 1/2 for sid in the D state.
J s6d

In the Ising language, the equation for the utilitiess5ad and
s5bd becomes

Di = sR− S− T + Pdsis j +
1

2
sR+ S− T − Pdsi

+
1

2
sR− S+ T − Pds j +

1

4
sR+ S+ T + Pd, s7ad

which, in the case ofz nearest neighbors, is generalized as

Di = o
nn
SsR− S− T + Pdsisnn +

1

2
sR+ S− T − Pdsi

+
1

2
sR− S+ T − Pdsnn +

1

4
sR+ S+ T + PdD . s7bd

Hence, the flipping conditions become, respectively,

si8 = − si ⇔ Di , D*ssi,s jd, s8ad

si8 = − si ⇔ Di , zkD*ssi,snndl. s8bd

Note that, sinceDi is linear in s j, the interaction with
multiple neighbors reduces to the interaction with the aver-
age spinksnnl.

Once we have made the translation between estimator and
magnetic variables, we are ready to connect the Ising Hamil-
tonian with the iterated PD. We consider the Ising Hamil-
tonian in uniform magnetic field:

H = Jo
ki,jl

sis j + ho
i

si . s9d

We will refer to J as the coupling constant and toh as the
external field. The first sum is taken over all the interacting

pairs of sitessi , jd and the second over all the sites.
The local energy change associated with the flipping of

the spin at sitei is given by

DEi = − 2fJzksnnl + hgsi . s10d

The most general expression for the estimateD*ssi ,s jd is of
the form of Eq. s7ad with arbitrary coefficients. In other
words, the estimate can be defined as the fictitious payoff
corresponding to an alternative matrix,

M * = SR* S*

T* P* D ,

with obviously these four possibilities:

D*s1/2,1/2d = R* , D*s1/2,− 1/2d = S* ,

D*s− 1/2,1/2d = T* , D*s− 1/2,− 1/2d = P* .

The way we choose to map the Ising system on IPD is by
identifying DEi with the differenceDi −D*ssi ,s jd between
the obtained payoff and the estimate. But only a reduced
class of strategies can be mapped this way. Indeed, while
expressions7ad contains a mixed termssis jd, two indepen-
dent termsssi ands jd, and a constant term, expressions10d
contains only mixedssis jd and singlessid terms. Thus, in
order to perform the mappingD*ssi ,s jd must be chosen such
that the terms proportional toss jd and constant one cancel
out. This restrictive condition in terms of the matrix
M* reads

1
2sR* − S* + T* − P*ds j + 1

4sR* + S* + T* + P*d

= 1
2sR− S+ T − Pds j + 1

4sR+ S+ T + Pd

⇒ R* + T* = R+ T and S* + P* = S+ P. s11d

Acceptable strategies for the mapping are thus generated
by specifying two independent parameterse1 ande2:

e1 = S* − S= P − P* and e2 = R* − R= T − T* . s12d

With the above parametrization, the mapping takes a very
simple form:

DEi = Di − zD*ssi,ksnnld = 2zfse1 − e2dksnnl − 1
2se1 + e2dgsi

⇒ J = e2 − e1 and h =
z

2
se1 + e2d. s13d

The Metropolis algorithm, applied to single site updating,
states that the probability for a given site to accept a given
changesfrom 1 to 2d depends on the associated internal en-
ergy difference:

p1→2 =
1

1 + expSE2 − E1

kBT
D .

Thus the temperature-dependent flipping probabilities are
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pf = 31 + exp12zsiFse1 − e2dksnnl −
1

2
se1 + e2dG

kBT
24

−1

.

s14d

At temperatureT=0, only the sign of the energy differ-
ence matters: the change is accepted with probability 1 if
DE,0 and rejected otherwise.

C. Classifying Markovian strategies

A useful scheme for the classification of Markovian strat-
egies is based on the four conditional probabilitiespR,pT,pS,
and pP that an individual playsC, in a two-players’ game,
after it scoredR,T,S, or P, respectively, in the previous
roundf20,21g. The strategies can be represented as points in
this four-dimensional strategy spacespR,pT,pS,pPd. Here,
we will restrict attention toelementary Markovian strategies
in which pR,pT,pS, andpP are either equal to 0 or 1sbinary
agentsd. Thus there are 24=16 possible strategies. All these
strategies can be formulated in terms of the extended orcon-
ditional estimate which in general depends on the state of
both players. It turns out that the mapping procedure defined
by Eqs.s9d–s14d generates a subset of fourIsing mappable
strategies, depending on the signs ofe1 ande2. For instance,
e1.0 ande2.0 is equivalent toR,R* , T.T* , S,S* , and
P. P* and hence this implies—according to Eq.s5ad—pR
=pT=pS=pP=0: i.e., s0,0,0,0d or ALWAYS D strategy. An-
other interesting situation ise1.0 ande2,0 that results in
s1,1,0,0d or TFT: imitate in the next round what your oppo-
nent did in the present round. The other two strategies that
complete the IMS subset are the opposite of these two: AL-
WAYS C and CONTRADICTOR. The remaining 16−4=12
strategies are nonmappable onto the Ising model. This subset
of strategies can in turn be divided into two types whether
they admit or not a fixed estimatesD* =constd. Thus, on the
one hand, we have fivefixed estimate strategiessFES’sd.
Among them, we recognize the usual RETALIATOR

s1,0,0,0d, whenP.D* .S, and PAVLOVs1,0,0,1d strategies,
when R.D* . P, both especially relevant for evolutionary
schemes. The three remaining less studied strategies are
FROZENs1,0,1,0d, AMBITIOUS s0,0,0,1d, and ALTERNA-
TOR s0,1,0,1d. On the other hand, we have the 16−s5+4d
=7 strategies, which cannot be formulated in terms of a fixed
estimate and only accept a conditional estimate depending on
the state of pairs of players. For instance, the ANTI-
PAVLOV s0,1,1,0d implies estimator-matrix elements obey-
ing S* ,S, P* , P, R* .R, andT* .T.

The FES and IMS subsets, which have null intersection,
comprise the most relevant strategies. In Table I we summa-
rize the main features of these nine strategies. The five pos-
sible regions delimited by the four real numbers ofM* yield
the five different FES’ssupper part of Table Id. The charac-
ters of the IMS’s are the Metropolis flipping probabilities
generated by Eq.s14d at zero temperature.

III. ANALYSIS OF ISING MAPPABLE STRATEGIES

Let us analyze the IMS strategies for the simplest case of
z=1. Notice that, from Eq.s10d, for the TFTsCONTRADIC-
TORd strategy the sign ofDEi is equal to the sign ofsis j
s−sis jd, J,0 s.0d andh can take a positive, null or nega-
tive value; i.e., it corresponds to a ferromagneticsantiferro-
magneticd material in an arbitrary external magnetic field. On
the other hand, in the case of ALWAYS-C and ALWAYS-D
strategies the corresponding material can be a ferromagnet or
an antiferromagnet and what determines the state is the di-
rection of the external field, always stronger than the cou-
pling constantJ scooperative state ifh is negative and all the
spins point in the upward direction, and noncooperative state
if the field is positive and the spins point in the downward
directiond.

A measure for the attained degree of cooperation in the
system is naturally provided by the average cooperation—
i.e., the fractionc of C agents. The valueceq of this fraction
in the ground state, for IMS’s, is related to the ground-state

TABLE I. Main features of nine elementary Markovian strategies: five with fixed estimate plus four with conditional estimate and
mappable on the Ising model. ARD stands for asynchronous random dynamics; SFC stands for synchronous fully connected.

Strategy

Estimate

Character
spR,pT,pS,pPd

Steady-state cooperation

Fixed Conditional ARD SFC

FROZEN D* ,S

NO

s1,0,1,0d Arbitrary, c* =c0 Depending on initial configurationsSee Fig. 1d
Stable:c* =0;1;1/2;c0;1−c0 c* =s1/2d
Oscillating: 1,−.0; c0,−.1−c0

RETALIATOR S,D* , P s1,0,0,0d c* =0

PAVLOV P,D* ,R s1,0,0,1d c* =1/2

AMBITIOUS R,D* ,T s0,0,0,1d c* =s3−Î5d /2=0.38

ALTERNATOR T,D* s0,1,0,1d c* =1/2

«1 «2

ALWAYS D NO .0 .0 s0,0,0,0d c* =0 sSee Fig. 2d c* =0 or c* =1

TIT-FOR-TAT .0 ,0 s1,1,0,0d Arbitrary, c* =c0

CONTRADICTOR ,0 .0 s0,0,1,1d c* =1/2

ALWAYS C ,0 ,0 s1,1,1,1d c* =1
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average magnetizationksil0 of the Ising system:

ceq=
1

2
+ ksil0. s15d

However, this thermodynamic ground state is not always at-
tained during an IPD game, especially for highly connected
systems. This is due to the fact that high connectivity implies
the simultaneous updating of a given player and many of its
opponents; thus, starting from a given configuration, the at-
tainable configurations are just a small subset of the phase
space. In the following, we have thus to distinguish between
the steady-statesafter a transientd average cooperationc* and
the thermodynamic average cooperationceq. To bypass this
nonergodicity, one has to use “generous” versions of the con-
sidered strategy, where the probabilities in the character
spR,pT,pS,pPd are different from strictly 0 or 1. From the
thermodynamic point of view, this is equivalent to consider
finite-temperature Monte Carlo dynamics.

IV. STABILITY OF COOPERATION

At this stage, it is necessary to make a distinction between
synchronousandasynchronous dynamics. Indeed, while the
characters of the different generated strategies have been de-
fined on a “two-player” basis, the evolution will strongly
depend on the type of dynamics and connectivity we assume
for the system. When all the agents simultaneously update
their states in each round, we talk about synchronous dynam-
ics. Conversely, when the update is carried out for the subset
of agents who just played, we talk about asynchronous dy-
namics. The asymptotic configuration also depends on the
connectivity. Two limits will be addressed: theasynchronous
random dynamicssARDd, in which a pair of players is ran-
domly chosen for each round, and thesynchronous fully con-
nectedsSFCd dynamics, where each player interacts simulta-
neously with all thez=sN−1d remaining players in the
system.

A. Stability in asynchronous random dynamics

In this casec* for a large systemsN@1d can be easily
evaluated, both for FES’s and IMS’s, by equating the varia-
tion rate of the C population to zero:

dc = − c2s1 − pRd − cs1 − cds1 − pS− pTd + s1 − cd2pP = 0,

s16d

where the flipping probabilities are related to the system av-
erage cooperationc through the probabilities in the character
spR,pT,pS,pPd. As an example, let’s calculate the ARD equi-
librium cooperation for the characters1, 0, 0, 1d—i.e., the
PAVLOV strategy—in which a cooperator will flip if it
scoresS, while a defector will flip if it scoresP:

cs1 − cd = s1 − cd2 ⇔ c* = 1
2 or c* = 1.

Here, onlyc* =1/2 is astable solution since, for all but one
cooperating agents, the system is rapidly driven away from
c=1. This can be easily proven by noticing that, in the PAV-
LOV random-asynchronous strategy, minority defectors are

most often satisfied since playing against a majority of co-
operators, forcing them to defect at each round. In contrast,
close toc=1/2, theprobability for a cooperator to defect is
about the same as the probability for a defector to cooperate.
The same reasoning applies to RETALIATOR, for which the
only stable cooperation isc* =0. The steady state cooperation
values for all considered strategies, within the ARD, have
been calculated and included in the last but one column of
Table I.

B. Stability in the synchronous fully connected system

In that case it is necessary to distinguish between the
FES’s and IMS’s.

sId FES. The equilibrium state strongly depends upon the
initial configuration, producing a quite complex phase dia-
gram in terms of initial configurations and values ofD* .
From Eq.s4bd, asz=N−1, the obtained utilities can be writ-
ten as a function ofc:

Di = o
nn

Si
TMSnn = Si

TMzkSnnl

= sN − 1dHcR+ s1 − cdS, for Si = C,

cT+ s1 − cdP, for Si = D.
J s17d

A stable configuration is reached when all players get a
payoff greater than the estimateD* or, in other words, when
D* is lower than the cooperator’s utilities. Marginal stability
is reached also when all players defect andD* is lower than
the defector’s utilities. WhenD* falls in between coopera-
tor’s and defector’s utilities, defectors will remain in the D
state, while former cooperators will all start to defect. Thus,
the system is driven toc=0 in one round. From the latter
configuration, two outcomes are possible:sid if D* , P, all
playerssdefectorsd are satisfied with the payoff and the sys-
tem is stable;sii d if D* . P, all players are unhappy and the
system rigidly flips toc=1 in the next round. But here, again,
we are dealing with a bifurcation: the system will be stable
only if D* ,R and will otherwise oscillate betweenc=0 and
c=1. Similarly, for D* greater than the defector’s payoff,
using the same kind of reasoning as above, we can distin-
guish four different steady-state configurations: stablec* =1
−c0 swherec0 is the initial average cooperationd, oscillations
betweenc=0 andc=1, stablec* =1, and oscillations between
c=c0 andc=1−c0. Thesc0;D*d phase diagram in Fig. 1 sum-
marizes the above discussion.

sII d IMS. In this case, the steady state corresponds to the
asymptotic limit of theT=0 Metropolis dynamics. As we
have anticipated, this steady state is not the thermodynamic
ground state. Performing the same kind of analysis as we did
for FES’s, we obtain a phase diagram in which the steady
state is eitherc=0 or c=1, depending both upon the initial
average cooperationc0 and upon the mapping parameterse1
ande2. In order to illustrate this situation, we displayed the
phase diagram in Fig. 2: the distance of a given point to the
origin, in this diagram, corresponds to the value of the initial
average cooperations0,c0,1d; its location in one of the
four quadrants corresponds to the considered IMS’s, as indi-
cated for each quadrant. The phase space turns out to be
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divided into two regions for which the steady-state value of
cooperation is 0 or 1. For ALWAYS D and ALWAYS C strat-
egies, the steady state is triviallyc=0 andc=1, respectively.
The boundary in the TFT quadrant is given by the polar
equationc0=1+2u /p and in the CONTRADICTOR quad-

rant by c0=−1+2u /p. These two equations are the polar
representation of the critical cooperation valuec̃= ue1u / sue1u
+ ue2ud dividing thec0 axis in two regions in CONTRADIC-
TOR and TFT strategies.

V. THERMODYNAMICS PREDICTIONS FOR THE IMS
CASE

An advantage of the formulation in terms of the magnetic
variables is the possibility to introduce noise or fluctuations
in a straightforward way by considering the case of nonzero
temperature. The fluctuations can help this self-organizing
system to explore and find more stable and, eventually, effi-
cient equilibrium states in its “fitness” landscape. In other
words, the injection of noise or random perturbations into the
system will allow it to escape for an eventually “shallow”
local minimum for the free energy and to reach a deeper
valley. Let us analyze the IMS’s in terms of the associated
Ising model. The Hamiltonians10d, for fully connected sys-
tems sz=N−1d, reduces to the internal energy functional
Usksld and, atT=0, to the free energy functionalFsksld:

H = Jo
ki,jl

sis j + ho
i

si = NF J

2
Nksl2 −

J

2
ks2l + hkslG

; Usksld ⇒ Fsksld = NF J

2
Nksl2 + hksl −

J

8
G . s18d

According to Eq.s13d, which defines the two parametersJ
andh, we can write

Fsksld =
N2

2
Fse2 − e1dksl2 +

N − 1

N
se1 + e2dksl −

e2 − e1

4N
G .

s19d

The ground-state magnetizationksil0 is the one that mini-
mizesFsksld within the intervalf−1

2 ; + 1
2
g. For large systems

sN@1d, the free energy functional reads

Fsksld <
N2

2
fse2 − e1dksl2 + se1 + e2dkslg.

When bothe1 and e2 have the same sign, sinceue2u− ue1u
, ue2u+ ue1u, the ground state is determined by the sign of the
external fieldsh>e1+e2d, regardless of the sign of the cou-
pling constantsJ=e2−e1d. The minima will be then located
on the edges of the allowed interval:

for ALWAYS D sh . 0d: ksl0 = − 1
2, i.e., ceq= 0,

for ALWAYS C sh , 0d: ksl0 = + 1
2, i.e., ceq= 1,

coinciding with the steady state obtained with theT=0 Me-
tropolis dynamicssAD and AC quadrants in Fig. 2d.

When e1.0 ande2,0 sTFTd, we are mapped on a fer-
romagnetic systemsJ,0d and the ground state coincides
again with the ends of the interval, determined by the sign of
the external field:

for e1 . e2 sh . 0d: ksl0 = − 1
2, i.e., ceq= 0,

FIG. 1. Phase diagram indicating the FES steady-state average
cooperation for SFC dynamics, as a function of the initial average
cooperationc0 and the fixed estimateD* . Note the two bold lines
across the diagram, representing the two payoff functions defined in
Eq. s17d.

FIG. 2. Phase diagram indicating the IMS steady-state average
cooperation for SFC dynamics, as a function of the initial average
cooperationc0 and the mapping parameterse1 ande2, as discussed
in the text. CON, AD, and AC are abbreviations for CONTRADIC-
TOR, ALWAYS C, and ALWAYS D, respectively.
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for e1 , e2 sh , 0d: ksl0 = + 1
2, i.e., ceq= 1.

This is in clear contrast to the phase diagram of Fig. 2. Here,
the frontier between the ground statesceq=0 andceq=1, in
the TFT quadrant, is a straight diagonal line regardless of the
initial configuration.

Finaly, whene1,0 ande2.0 sCONTRADICTORd, we
are mapped on an antiferromagnetic systemsJ.0d and the
ground state falls in the interior of the interval. The precise
value of the ground-state magnetizationksl0 is obtained for
the derivative ofFsksld going to zero:

]Fsksld
]ksl

= 0 ⇔ ksl0 = −
1

2

e1 + e2

e2 − e1
=

1

2

ue1u − ue2u
ue1u + ue2u

⇒ ceq

=
ue1u

ue1u + ue2u
.

Here again, the results differ drastically from theT=0 Me-
tropolis dynamics. The ground state depends on the precise
values of the model parameters, varying continuously be-
tween 0 and 1.

The above results—which are independent of the initial
configuration—are summarized in the phase diagram of Fig.
3.

For fully connected systems, we expect the mean-field
sMFd treatment to provide an exact solution. Indeed, the MF
Hamiltonian can be written as follows:

HMF = Jo
iÞ j

sizks jl + ho
i

si = o
i

h̃si , s20d

with h̃=fzJksl+hg. The corresponding partition function
reads

ZMF = Trhexps− bHMFdj = F2 coshSbh̃

2
DGN

. s21d

And the implicit equation for the average magnetization is

ksl =
1

N

] lnsZMFd
]h

= −
1

2
tanhHb

zJksl + h

2
J . s22d

At the zero-temperature limitsb→`d, the right-hand term in
Eq. s22d is a step function centered atksl=−h/zj, jumping
from ±1

2 to 7
1
2, depending on the sign ofJ; its intersection

with the linear left-hand term will give theMF solution.
When bothe1 ande2 have the same sign, the intersection

is unique, and the results are the same as indicated in Fig. 2.
Whene1,0 ande2.0, the unique intersection is at

ksl0 =
− h

zj
=

1

2

e1 + e2

e1 − e2
⇒ ceq=

1

2
+ ksl0 =

e1

e1 − e2
=

ue1u
ue1u + ue2u

,

coinciding also with the results in Fig. 2.
Whene1.0 ande2,0 sTFTd, three intersections are pos-

sible, but only one corresponds to the free energy minimum
sferromagnetic system in external fieldd. The two solutions
areceq=0 sfor ue1u. ue2ud andceq=1 sfor ue1u, ue2ud, again in
perfect agreement with Fig. 2.

Thus, the ground state of the fully connected system is the
same of the MF Hamiltonian. This ground state also applies,
as a good approximation, to highly connected systems—i.e.,
when sN−1d.z@1.

VI. DISCUSSION

In summary, it was shown that all the relevant elementary
Markovian strategies can be formulated in terms of an ex-
tended sconditionald estimate. These strategies have been
studied and their equilibrium states computed for two ex-
treme situations: ARD and SFC. Two of the most popular
agent strategies—PAVLOV and TFT—have been identified
as particular examples of the estimator-based strategies be-
longing to different categories. While the second is mappable
onto the Ising Hamiltonian the first is not.

The exploitation of the mapping between a subset of the
space of simple Markovian strategies and the Ising model,
presented in this work, will be analyzed in a future publica-
tion. Here we only explored some of its more straightforward
consequences.

In addition, this correspondence can be extended beyond
the Ising model. First, instead of considering uniform agents
a more realistic assumption is the heterogeneity in the degree
of selfishness. This can be accomplished by taking an esti-
mateD* that varies from agent to agent—i.e., aDi

* dependent
on the sitei sor equivalently the fictitious payoffs varying
from agent to agentd. This would correspond to a spin glass
instead of an Ising model. Second, the binary behavior as-
sumptionsC or Dd is often criticized as unrealistic. In real
life situations the agents exhibit different degrees of coopera-
tion. This feature can be overcome by resorting to continuous
behavioral variablesci instead of binary ones as it was con-
sidered inf22g. In that case the mapping with magnetic sys-
tems would lead to more rich models like theXY model in

FIG. 3. Phase diagram indicating the IMS thermodynamic
ground-state average cooperation for SFC dynamics, as a function
of the two mapping parameterse1 ande2.
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which topological excitations govern its phase diagram.
Work on these directions is in progress.

The connection between the generalized estimator ap-
proach and the spatial evolutionary games off16g is also
worth analyzing in the context of a general discussion of the
cooperation between self-interested agents from the point of
view of biologists, economists, and physicists. Moreover, a
heterogeneous estimator formalism can be used to implement
evolutionary games.

To conclude, it is worth remarking that the study we car-
ried out for the PD game is valid for an arbitrary 232 game
with a payoff matrix of the form of Eq.s1d but payoffs
R, S, T, andP not obeying relationss2ad and s2bd. For ex-
ample, an alternative model of cooperation in human societ-

ies is theStag Huntgamef23g also known as theAssurance
game in which,R.T. P.S and, thus, rational agents are
pulled in one direction by considerations of risk and in an-
other by considerations of mutual benefitf24g. Another rel-
evant game to explore with the formalism presented here,
which is useful in the context of population dynamics, is the
Hawk Dovegame introduced by Maynard-Smithf3g. In that
case the punishment the players got when both play D is so
strong thatR.T.S. P.
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